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Introduction

Over the course of the last decade, wireless technology has taken the world
by storm. It might at this point seem like that was an inevitability, but it was
not always so clear. For example, Bob Metcalfe—who is rightly famous for his
contributions to networking, particularly his efforts in the design of Ethernet—
put it like this in 1993:

“Wireless mobile computers will eventually be as common as today’s pipeless
mobile bathrooms. Portapotties are found on planes and boats, at construc-
tion sites, rock concerts, and other places where it is very inconvenient to
run pipes. But bathrooms are still predominantly plumbed. For more or less
the same reasons, computers will stay wired. (...) So let’s just wire up our
homes and stay there.”

— Bob Metcalfe [Met93].

And here we are, twenty years later. That may not be a particularly short time,
but wireless computing has well and truly arrived. Many people carry a smart-
phone connected to mobile internet; many local area networks are now wireless.
For many purposes it is no longer necessary to wire up our homes. Being re-
quired to stay there seems old-fashioned.

Wireless technology is of course older than its widespread consumer ad-
option — indeed, on a computer-science scale of time, it is much older. The
ALOHAnet system [Abr70] from the early 1970s, for example, was an influential
achievement, providing a radio-based network between the Hawaiian islands. In
this case, the specifics of a situation demanded a non-standard solution; today,
wireless communication might be considered the standard assumption. Such a
wireless world poses new questions for computer science and brings new per-
spectives for existing concepts. In this introduction we shall touch upon several
such aspects and how the content of this thesis addresses them.
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Some of the work in this thesis is motivated by a specific application of wireless
communication: sensor networks. As a general term, sensor networks encompass
many things; specific examples will follow, but in generic terms the properties
that come to mind are as follows. A sensor network consists of a large collection
of small devices, each equipped with sensors and a wireless transceiver, carrying
out some data-gathering or surveillance task. These devices are typically called
sensor nodes.

What sets these sensor networks apart from wireless networks in general is
mainly their hardware and the manner of their deployment. Firstly, the hard-
ware in a sensor network is typically considered to be of low cost and low
reliability. Secondly, the deployment of a sensor network might not be care-
fully designed or executed, possibly because the environment is hard to reach
or hard to service. These two aspects put a focus on fault tolerance since we
may be working with devices that were designed to be disposable: better to
handle failures in the network than to make individual devices more reliable.
Depending on the deployment and the hardware, it may be impossible or im-
practical to have replaceable or rechargeable batteries. This puts an additional
focus on energy efficiency: a device might be permanently lost when it runs out
of energy.

Much of networking theory is based on graphs: they are the de facto standard
model for wired communication networks. Graphs have, in a sense, proven to be
the ‘right’ model. The properties of wireless transmissions, on the other hand,
have turned out harder to capture in graphical models. In wireless networking,
there are certainly interesting and useful graph-based results to be had. (We
provide some in Part II of this thesis.) Yet it is still very much up for debate what
the ‘right’ model for wireless networking is, if there is such a thing. Common
among many of the new models being proposed is a strong focus on the physical
properties of radio transmission. In Part I of this thesis we focus on two such
physical models: a new model for localisation and new results in the well-known
Signal to Interference and Noise Ratio model.

Localisation. One of the areas that has seen a shift to more physically-motivated
models is localisation, a problem that is particularly interesting in the context of
sensor networks: where am I? The physical location of a sensor node is often
important as this is where the measurements were taken. It is greatly advant-
ageous if the nodes can figure out, by themselves, where they are: then there is
no tedious initial configuration and the network is robust against misplaced or
moving nodes.

A typical approach for the localisation problem comes from the field of graph
realisation. The basis for this approach is node-to-node distance measurement.
Such measurements can be based, for example, on the received signal strength of
a known-power transmission. Another option is to measure the time difference
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between transmission and receipt of messages. This results in (approximate)
distances between certain nodes being known. These data can be combined in
a graph with specified edge lengths. The abstract problem of drawing a set of
points such that a given set of point pairs has given distances is known as graph
realisation. This problem is NP-hard in many settings and variants [Sax79]. Still,
the problem is well studied, for example in work on sensor network localisa-
tion [DKQW10].

An alternative approach would be to use an off-the-shelf global positioning
system (GPS). This certainly works well on smartphones. But, as we will ar-
gue concretely in the main text, GPS is often not suitable for deployment in
sensor network applications. Furthermore, edge-length measurements are, in
practice, often not available at the precision required for effective graph realisa-
tion. For these reasons, there is increasing interest in range-free localisation. This
is localisation without explicit measurement of point-to-point distances. After
localisation has succeeded, point-to-point distances can of course be inferred,
but a range-free system does not take direct distance measurements as input.

In Chapter 3 we propose a novel range-free localisation approach. Our loc-
alisation is performed in relation to some base stations. These are assumed to
have access to a permanent power source and a powerful radio transmitter. The
system is then designed to be as simple and cheap as possible for sensor nodes:
they are after all the most constrained part of the system.

The base stations provide an ongoing stream of transmissions that the sensor
nodes can tune into when they need to localise. We analyse how well our system
performs with a probabilistic transmission schedule. Additionally we design
deterministic schedules with worst-case performance bounds.

Scheduling wireless transmissions. A normal network cable connects two en-
dpoints; an interesting aspect of wireless communication is that it features a
medium shared by many devices. One of the consequences is that a single
transmission may be detected and successfully interpreted by multiple receivers:
broadcasting comes for free with the medium. On the other hand, simultaneous
transmissions might interfere, to the effect that neither message can be under-
stood. This greatly complicates the problem of coordinating communication. In
this way, wireless technology forces us to revisit basic modelling assumptions.

This many-to-many nature of the medium notwithstanding, graphs are a
powerful tool for the analysis of wireless networks. (A tool that we gladly use
in Part II of this thesis, where we are not necessarily concerned with broadcast-
ing or interference.) A broadcast from a node in a communication graph can
be modeled by letting a messages arrive at all neighbouring nodes instead of
just at a single recipient. Interference can then be modeled by saying a collision
occurs if multiple messages arrive at a node simultaneously: then none of these
messages are received. Many results have been proven in this model. Often one
considers graphs with structural properties that are reasonable for wireless net-
works, such as disc graphs, bounded doubling dimension [GKL03] or bounded
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independence [KNMW05].
In addition, there is an increasing output of research concerning models that

are not based on graphs. An important such model is the signal-to-interference-
plus-noise ratio (SINR) model. It has also been called—perhaps a little presump-
tuously—the physical model. It is, in any case, a physical model: physically
motivated, physically reasonable and explicitly nongraphical.

There are variants and parameters, but a typical version goes like this. Con-
sider transceivers located on the 2D plane. The model then posits that the power
of transmitted signal diminishes as 1/d2, where d is the distance from the trans-
mitter. In particular, for a sender at point s and a receiver at point r the strength
of the arriving signal equals 1/|r− s|2. This signal reaches all receivers: all trans-
missions are broadcast. To determine whether a message is correctly received,
we look at the ratio of its signal strength versus the total strength all others
signals (which interfere). A message is correctly received if and only if, at the
receiver, it is at least as strong as the sum of all other signal strengths. We review
the exact model in the preliminaries (Section 2.6).

In this SINR model, receivers are influenced most by nearby transmitters.
On the other hand, the signals from many faraway transmitters can build up to
cause significant interference over long distances. This global nature of interfer-
ence is an interesting aspect of the model; one that is missing from graph-based
models.

One of the reasons for the interest in the SINR model is the pioneering work
of Gupta and Kumar [GK00] concerning the (stochastic) capacity of wireless
networks in this model. Later it has become the dominant nongraphical model
in algorithmic work following the investigation of transmission scheduling by
Halldórsson et al. [GWHW09]. As opposed to earlier channel-capacity results,
they look at worst-case networks. This way we are faced with a computational
problem in the classical sense: given a network and a set of communication
requests, devise a schedule that successfully transmits everything as quickly as
possible.

Their initial paper proved NP-hardness of this ‘wireless scheduling’ prob-
lem. Further results include ongoing research to give distributed approximation
algorithms [HM11]. We argue that, in addition to that, it remains interesting
to look at exact solutions—even though NP-hardness dooms this to infeasibility
for large instances. Being able to actually calculate optimal solutions provides
valuable insight into their structural properties.

In Chapters 4 and 5 we study a problem that is intimately related to the
scheduling problem. We are given the location of wireless transmitters and
receivers. Along with this, we get a set of transmission requests: which trans-
mitters have messages for which receivers. We then look to find a maximum link
independent set, that is, a maximum-size set of transmissions that simultaneously
succeed. This is the most requests we can immediately fulfill. The relation
to scheduling all requests is that, at any time in a schedule, any simultaneous
transmissions must be such a link independent set.
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The problem of finding a link independent set of maximum cardinality is
NP-complete. We design a branching algorithm and analyse its moderately-
exponential runtime. We implement the algorithm and demonstrate that it runs
well. Using this implementation we then experimentally investigate the proper-
ties of random geometric instances. We additionally prove some of these proper-
ties. In particular, we prove that very large link-independent sets are unlikely—
for a certain value of ‘very large’—yet that rather large link-independent sets
exist with high probability.

Robust routing. An issue that is important in wireless networking, and partic-
ularly in sensor networks, is fault tolerance: communication is not reliable. A
particular wireless link might be less reliable than a cable. Also, mobile devices
might go out of range, causing links to disappear—this can be a reasonable
scenario where a cable becoming unplugged might be less so.

One reason that a wireless device might fail is that it runs out of battery
power. This is particularly common in sensor networks, where devices are small
and cheap. It can reasonably be assumed that not all nodes run out of battery
power at the same time. Then we want the remaining part of the network to
continue functioning. Deployment in harsh physical conditions might also lead
to a significant hardware failure rate. Things like these make fault tolerance an
important issue in wireless networks and sensor networks in particular.

Many of the problems studied in this thesis are computationally hard; likely
too hard to solve within a real sensor network. As we argued for the link inde-
pendent set problem before, it is still interesting to do the exact computations
offline for analytical purposes. However, deploying the optimal solutions ar-
rived at in this way seems like a dangerous move when failure tolerance is
required. What use is a carefully crafted plan if it is no longer valid by the time
it gets executed?

This leads us to look at robust recoverability, a concept from operations re-
search that has recently seen development. In this framework one defines a
‘simple’ recovery procedure to deal with faults. Simple is here a relative concept,
but we particularly want to run recovery within the network. The central idea
of robust recoverability is then to take the behaviour of this recovery procedure
into account during planning: we already know how the recovery procedure
will behave and we can base our plan on this.

In Chapter 6 we study a very basic problem: finding a path between two
given nodes in a graph. We will use this path to route packets in the network.
The faults we consider are complete node failures. Perhaps a node has run out
of battery power, perhaps it was fatally damaged; in any case, we can no longer
use it. This is where the recovery procedure comes in. It consists of assigning,
beforehand, a backup node for every node in the network. In case of failure, the
backup node steps in as a replacement. (Perhaps the backup node was, up until
that point, in sleep mode in order to save battery; perhaps the backup node will
now serve double duty.) By assigning backups beforehand, this replacement can
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be handled within the network in an ad hoc fashion.
The computational problem is then to plan the path and its backup nodes.

We formalise this problem and resolve the resulting complexity questions. Some
variants are polynomial-time solvable and some are NP-complete; we give al-
gorithms for each. We also analyse the variation where we are given the path
and have to select only the backup assignment. Again, some variants are hard
and some are easy; again, we give algorithms for all of them.

Energy-efficient data gathering. The resources studied by computer science
have primarily been time and space (memory). The exponentially-increasing
transistor count provided by Moore’s Law has given us increasingly fast pro-
cessors, but also an increase in energy consumption [Max13]. On the scale
of individual machines this has led to engineering problems in terms of heat
dissipation. On an industrial scale, it has sparked interest in ‘green comput-
ing’ [Kur08]. But even without a concern for environmental footprint, wireless
devices powered by a battery make energy consumption a very practical issue.

The energy limitations of battery-powered operation are especially tangible
in the field of sensor networks. Here we consider small, simple, sometimes even
disposable devices equipped with some computing power and a wireless trans-
ceiver. Coupled with sensors for physical quantities such a device is called a
sensor node.

An example application would be sensor nodes scattered among the crops on
a farm, measuring the amount of rainfall, sunlight, soil moisture et cetera. This
can support control decisions for such things as irrigation and the application of
fertiliser [WZW06]. As a different, more specific example, a network including
sensors for strain, vibration and temperature has been embedded in the concrete
of the Hollandse Brug, a bridge at Muiderberg in the Netherlands. The network
is being used to monitor the structural health of the bridge [KBK+

10, VKV+
11].

The battery of sensor nodes is typically considered nonreplaceable. This is
most clear in the example where the nodes are embedded in concrete.1 Once
deployed, a sensor node performs its task until it breaks down. This provides
a direct link between between energy consumption and the operational lifetime
of a sensor network.

As a final topic in this thesis we consider energy consumption. This has
already influenced design decisions in Chapter 3, but in Chapters 7 and 8 we
look explicitly at energy budgets. We study a task that is often central in sensor
networks: gathering the data from the sensors in a base station in the network.
How much data can we gather before exhausting the network? We model this
as a graph problem and, for its relation to classical network flow, call it energy-
constrained flow.

1In the case of the bridge, one might consider wired power and networking. The advantage of
a wireless approach is in the ease of deployment and the low impact on the overall engineering
of the bridge.



15

We show that the problem of maximising the amount of data gathered is
strongly NP-complete and even APX-hard. When restricted to geometric net-
works, with physically reasonable energy costs, the problem remains hard. For
graphs of bounded treewidth, we give pseudopolynomial-time algorithms.

Then we look to find good solutions despite this hardness. We develop heur-
istic algorithms based on linear programming and column generation. Exper-
iments with an implementation of these algorithms demonstrate their effect-
iveness. Rounding of the linear program also gives efficient approximation al-
gorithms, which works particularly well for st-planar graphs.

In dealing with these topics, we will have touched on many aspects of wireless
sensor networks, their structure and the related algorithms. Before the thesis
proper begins, let us briefly draw attention to two divisions that it contains.
The first is readily apparent from the table of contents: a Part I about physical
models and a Part II about graphical models. This is a technical divide and
merely a result of organising the material.

The second divide is methodological in nature and a divide that, where pos-
sible, we have tried to bridge. On the one hand, we have theoretical, worst-case
results about the runtime of algorithms and the structural properties of wireless
networks. On the other hand, we have experimental results based on imple-
mentations of our algorithms and on simulations. These two approaches are
sometimes seen as being at odds with each other—indeed, as the saying goes:
“In theory, theory and practice are the same. In practice, they are not.”2 In recog-
nising this difference, we find that in fact theoretical and experimental research
complement each other to give a more comprehensive view of the subject.

As an example in this thesis, we can point to Chapters 4 and 5 about the
Link independent set problem. Even though Chapter 4 is mainly concerned
with the formal correctness and worst-case runtime of an algorithm, the design
of the algorithm was very much informed by experiments in the early stages
of the research. Then, in Chapter 5 we complement the worst-case result with
runtime measurements on an actual implementation of the algorithm. With
this implementation we observe some structural properties of wireless networks
and, moving to theory again, continue to prove some of the observed beha-
viour. As another example, the concept of a regular schedule (Chapter 3) and the
corresponding theorems were inspired by the experimental results in Table 3.2.
In these ways, there is a back and forth between theoretical and experimental
results.

It is important to not be satisfied too easily with experimental appearances:
models and theories are what computer science is built on, for good reason. Yet
a theorem might not tell the whole story, and pure theory might not be how we
arrive at a result (cf. [Tic98]).

2Variously attributed to Albert Einstein, Jan van de Snepscheut, Yogi Berra, and others.


